1 Title: Ammonium recycling supports toxic Planktothrix blooms in Sandusky Bay, Lake 2 Erie: evidence from stable isotope and metatranscriptome data

- 3 4
- Justyna J. Hampel^{a*}, Mark J. McCarthy^a, Michelle Neudeck^b, George S. Bullerjahn^b, Robert Michael L. McKay^b, and Silvia E. Newell^a 5
- 6
- 7
- 8 ^a Department of Earth & Environmental Sciences, Wright State University, Dayton, OH, United
- 9 States
- ^b Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 10
- **United States** 11
- Corresponding author (hampel.4@wright.edu) 12
- 13 14

© 2018 published by Elsevier. This manuscript is made available under the Elsevier user license https://www.elsevier.com/open-access/userlicense/1.0/

15 Abstract:

16	Sandusky Bay, Lake Erie, receives high nutrient loadings (nitrogen and phosphorus) from the
17	Sandusky River, which drains an agricultural watershed. Eutrophication and cyanobacterial
18	harmful algal blooms (cyanoHABs) persist throughout summer. Planktothrix agardhii is the
19	dominant bloom-forming species and the main producer of microcystins in Sandusky Bay. Non-
20	N ₂ fixing cyanobacteria, such as <i>Planktothrix</i> and <i>Microcystis</i> , thrive on chemically reduced
21	forms of nitrogen, such as ammonium $(\mathrm{NH_4}^+)$ and urea. Ammonium regeneration and potential
22	uptake rates and total microbial community demand for NH_4^+ were quantified in Sandusky Bay.
23	Potential NH_4^+ uptake rates in the light increased from June to August at all stations. Dark uptake
24	rates also increased seasonally and, by the end of August, were on par with light uptake rates.
25	Regeneration rates followed a similar pattern and were significantly higher in August than June.
26	Ammonium uptake kinetics during a <i>Planktothrix</i> -dominated bloom in Sandusky Bay and a
27	Microcystis-dominated bloom in Maumee Bay were also compared. The highest half saturation
28	constant (K_m) in Sandusky Bay was measured in June and decreased throughout the season. In
29	contrast, K_m values in Maumee Bay were lowest at the beginning of summer and increased in
30	October. A significant increase in V_{max} in Sandusky Bay was observed between July and the end
31	of August, reflective of intense competition for depleted NH_4^+ . Metatranscriptome results from
32	Sandusky Bay show a shift from cyanophycin synthetase (luxury NH_4^+ uptake; <i>cphA1</i>)
33	expression in early summer to cyanophycinase (intracellular N mobilization; cphB/cphA2)
34	expression in August, supporting the interpretation that the microbial community is nitrogen-
35	starved in late summer. Combined, our results show that, in late summer, when nitrogen
36	concentrations are low, cyanoHABs in Sandusky Bay rely on regenerated NH_4^+ to support
37	growth and toxin production. Increased dark NH_4^+ uptake late in summer suggests an important

 bays suggest a competitive advantage for <i>Planktothrix</i> over <i>Microcystis</i> in Sandusky Bay due to its higher affinity for NH₄⁺ at low concentrations. Keywords: Nitrogen, cyanobacteria, <i>Planktothrix</i>, nutrient management, Lake Erie, Sandusky Bay Bay 	38	heterotrophic contribution to NH_4^+ depletion in the phycosphere. Kinetic experiments in the two
 40 its higher affinity for NH₄⁺ at low concentrations. 41 42 Keywords: Nitrogen, cyanobacteria, <i>Planktothrix</i>, nutrient management, Lake Erie, Sandusky 43 Bay 44 45 46 	39	bays suggest a competitive advantage for <i>Planktothrix</i> over <i>Microcystis</i> in Sandusky Bay due to
 41 42 Keywords: Nitrogen, cyanobacteria, <i>Planktothrix</i>, nutrient management, Lake Erie, Sandusky 43 Bay 44 45 46 	40	its higher affinity for NH_4^+ at low concentrations.
46 47 48 49 50 51 52 53 54 55 56 57 58	41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Keywords: Nitrogen, cyanobacteria, <i>Planktothrix</i> , nutrient management, Lake Erie, Sandusky Bay

61 **1. Introduction**

62

63 Lake Erie, the shallowest and most productive of the Laurentian Great Lakes, provides key ecosystem services and supports an annual US\$50 billion tourism, fisheries, and boating 64 65 industry (Watson et al., 2016). However, Lake Erie has been subjected to eutrophication, habitat loss, impoundments, and introduction of invasive species. The western basin of Lake Erie is 66 67 particularly susceptible to eutrophication and cyanobacterial harmful algal blooms (cyanoHABs), 68 which have increased since the mid-1990's, threatening its ability to provide ecosystem services 69 (Watson et al., 2016). In the 1960's and 1970's, cyanoHABs in Lake Erie consisted mostly of 70 nitrogen (N) fixing taxa (e.g., Dolichospermum, [formerly Anabaena], and Aphanizomenon). 71 However, upon re-eutrophication in the 1990's, cyanoHABs shifted to mostly non-N₂ fixing taxa 72 (Steffen et al., 2014; Watson et al., 2014; Chaffin et al., 2018). CyanoHABs in the western basin 73 are related to increased N and phosphorus (P) loadings from the Maumee River, which carries 74 runoff from a primarily agricultural watershed (Richards et al., 2010). In Maumee Bay, non-75 diazotrophic Microcystis aeruginosa is the dominant bloom organism, a common cyanoHAB 76 species found globally (Havens et al., 2001; McCarthy et al., 2009; Kurmayer et al., 2015). 77 However, blooms in Sandusky Bay, east of the western basin, are almost entirely attributed to the 78 filamentous, non-N₂ fixing *Planktothrix agardhii* (Davis et al., 2015; Salk et al., 2018). P. 79 agardhii has a wide distribution and is ubiquitous in eutrophic lakes globally (Suda et al., 2002; 80 Steffen et al., 2014; Kurmayer et al., 2015). 81 Sandusky Bay is a shallow basin, formed from a drowned river mouth (mean depth = 2.6m; area = 162 km^2) in the southern part of Lake Erie (Fig 1; Conroy et al., 2007). Sandusky Bay 82 83 receives high N and P loadings from the Sandusky River, which also flows through primarily

84 agricultural areas (Conroy et al. 2007; Richards et al. 2010). The residence time in Sandusky Bay

85 can vary from 8 to 81 days (Salk et al., 2018) and is similar to the residence time in Maumee Bay 86 and the western basin (51 days; Millie et al., 2009). Total N concentrations in the bay decrease as 87 the summer bloom progresses, starting with high concentrations of dissolved inorganic nitrogen (DIN) in June and July (50–600 μ M), followed by low (<5 μ M) to undetectable DIN 88 89 concentrations in August–October, mainly due to a decrease in NO₃⁻ (Davis et al., 2015; Salk et 90 al., 2018). These low N concentrations by the end of summer, and elevated, albeit variable 91 concentrations of soluble reactive phosphorus (SRP; Davis et al., 2015; Salk et al., 2018), 92 suggest seasonal N limitation in Sandusky Bay. Nutrient addition experiments showed that both 93 bloom growth and microcystins (MC) production were stimulated by additions of dissolved N, but not P, and that additions of both $NH_4^+ + PO_4^{3-}$ and urea $+ PO_4^{3-}$ yielded highest MC 94 concentrations (Davis et al., 2015). High ambient N concentrations are required for the 95 production of microcystins, which contain 10 N atoms per microcystin molecule (Davis et al., 96 97 2015; Gobler et al., 2016). Another study from Sandusky Bay also showed growth stimulation by 98 NH_4^+ , NO_3^- , and urea, consistent with N limitation in the system (Chaffin and Bridgeman, 2014). 99 These results emphasize the importance of chemically reduced N species during cyanoHABs 100 (Glibert et al., 2016).

101 Comprehensive phytoplankton community studies in Sandusky Bay show that *P*. 102 *agardhii* is the dominant species during the bloom season and the main producer of MC (Rinta-103 Kanto and Wilhelm 2006; Conroy et al., 2007; Davis et al., 2015; Steffen et al., 2015; Salk et al., 104 2018). *P. agardhii* may proliferate in these waters due to its tolerance to a broad temperature 105 range and acclimation to growth at low light intensity (Oberhaus et al., 2007). The shallow depth 106 of Sandusky Bay leads to suspended sediment particles that create turbidity and low light 107 conditions, where *Planktothrix* thrives (Scheffer 1997). Additionally, *Planktothrix* is common in

108	lakes with low bioavailable N and low N:P (Rücker et al., 1997), conditions that prevail in
109	Sandusky Bay in late summer. However, these low N:P conditions are often caused by the
110	cyanoHABs (e.g., Xie et al. 2003), and this pattern of DIN depletion occurring after bloom
111	initiation has been observed in Sandusky Bay (Chaffin and Bridgeman, 2014; Davis et al., 2015;
112	Salk et al., 2018). Once low N:P conditions are established, P. agardhii has a low half-saturation
113	constant (K_m) for NH_4^+ (Zevenboom and Mur 1981), and thus high substrate affinity, compared
114	to other non-diazotrophic cyanobacteria, e.g., Microcystis (Niklisch and Khol 1983). This high
115	affinity, along with high maximum uptake rates (V_{max} ; Zevenboom et al., 1980), makes
116	Planktothrix an excellent competitor for N substrate in low N conditions.
117	Non-diazotrophs, such as Microcystis and Planktothrix, are highly competitive for
118	chemically reduced N forms, such as NH_4^+ and urea (Blomqvist et al., 1994; Glibert et al., 2016).
119	NH_4^+ transport across the cell membrane, via ammonia transporters (<i>amt</i> genes), and assimilation
120	into biomass, via the glutamine synthetase pathway (gln genes), are less energy intensive than for
121	NO ₃ ⁻ (Glibert et al., 2016). During high <i>in situ</i> DIN conditions, cyanobacteria can assimilate and
122	store N intracellularly (luxury uptake) to use when DIN is depleted. Cyanobacteria including,
123	Planktothrix spp., are capable of synthesizing cyanophycin granules as an N storage polymer
124	(Van de Waal et al., 2010) when N is bioavailable, and synthesis of cyanophycin is dependent on
125	cyanophycin synthetase, encoded by cphA1. Degradation of cyanophycin is a function encoded
126	by <i>cphB</i> , cyanophycinase, and is co-transcribed with another cyanophycinase gene, <i>cphA2</i> , in the
127	cphBA2 operon. Cyanophycinase mobilizes stored N when DIN in the water column is depleted.
128	Due to high biological demand and fast turnover rates, NH_4^+ rarely accumulates in the
129	water column, resulting in low <i>in situ</i> concentrations. Thus, NH_4^+ dynamics and turnover rates
130	are important components of the aquatic N cycle and productivity in eutrophic lakes affected by

cyanoHABs. Regeneration of NH₄⁺ contributes to internal cycling and availability of NH₄⁺ for 131 132 assimilation (James et al., 2011; Paerl et al., 2011; McCarthy et al., 2013). For example, rapid NH_4^+ turnover can fuel and sustain blooms, despite low *in situ* NH_4^+ concentrations (Paerl et al., 133 134 2011; McCarthy et al., 2013; Hampel et al., 2018). On the other hand, cyanobacteria must 135 compete with other organisms for NH_4^+ ; for example, nitrifiers are an important link between 136 reduced N in the water column and its subsequent removal through denitrification (An and Jove, 137 2001). Studies that focus solely on monitoring static nutrient concentrations can miss important 138 aspects of nutrient and cyanoHAB dynamics. Therefore, spatio-temporal NH₄⁺ cycling, rather 139 than *in situ* NH₄⁺ concentration, can provide better insights into understanding the dominance of 140 non-N₂ fixing cyanoHABs (Hampel et al., 2018).

141 Little is known about NH_4^+ uptake and regeneration and the kinetics of NH_4^+ uptake during *Planktothrix* blooms. Light availability is likely not the only factor shaping phytoplankton 142 143 community structure in Sandusky Bay, since other shallow, turbid lakes are dominated by 144 Microcystis (e.g., Taihu Lake; Paerl et al., 2011) instead of Planktothrix. The ability to compete 145 for nutrients, or substrate affinity, likely plays an important role in distinguishing between Microcystis blooms in western Lake Erie and Planktothrix blooms in Sandusky Bay. The goals 146 147 of this study were to: (1) quantify NH_4^+ regeneration and potential uptake dynamics and total microbial community demand for NH₄⁺ in Sandusky Bay during the summer bloom (June – 148 149 August); and (2) compare the kinetics of NH_4^+ uptake during a *Planktothrix*-dominated bloom in 150 Sandusky Bay and a *Microcystis*-dominated bloom in Maumee Bay. We hypothesized that NH₄⁺ 151 regeneration and potential uptake rates would increase through the summer as in situ DIN is 152 depleted and the *Planktothrix* bloom becomes more N stressed. Based on previous literature on NH4⁺ uptake kinetics for *Microcystis* (Nicklisch and Khol 1983) and *Planktothrix* (Zevenboom 153

154 and Mur 1981), we hypothesized that the *Planktothrix*-dominated bloom in Sandusky Bay would have higher affinity for NH_4^+ , representing a competitive advantage at low NH_4^+ concentrations, 155 156 than the Microcystis-dominated bloom in Maumee Bay.

157

158 159 2. Methods

160 2.1 Sample Collection

161

Water samples from Sandusky Bay were collected on five occasions during summer 162 163 2017: June 5, June 26, July 31, August 14, and August 28. Surface water (top 20 cm) for NH₄⁺ 164 dynamics experiments was collected in 3 L Nalgene bottles and stored in a dark cooler until 165 processing. All experiments were commenced within three hours of sampling. Samples were 166 collected from four stations: Ohio Department of Natural Resources (ODNR) 4 and 6 in the inner 167 part of the bay, ODNR 2 in the outer bay, and Bells, located just outside the bay in Lake Erie 168 (Fig. 1). Samples for *in situ* nutrient analyses were filtered, with a 60 mL syringe, immediately in 169 the field using 0.2 µm Sterivex cartridge filters (Millipore) into 60 mL acid-washed polyethylene 170 bottles, stored in the dark on ice, and processed on the same day in the lab. Physico-chemical 171 parameters, including temperature and pH, were measured using a multi-parameter sonde (YSI 172 model 600 QS). Due to a malfunction in the dissolved oxygen (DO) probe on the YSI, daily DO 173 measurements, starting 28 June 2017, were generated using a Great Lakes Observing System 174 (GLOS) buoy located near ODNR 2 in Sandusky Bay. Water column DO values from June 5 and 175 26 were measured with a sonde deployed in the eastern outer bay (east of EC 1163; Fig. 1). 176 Turbidity was measured using Secchi depth as a proxy. Water for chlorophyll $a \square$ Chl 177 $a \square$ analysis was collected in amber bottles and stored on ice until return to the lab. Biomass 178 was collected on the same day onto 0.2 µm polycarbonate filters and stored at -20°C until treated 179 with 10 mL of 90% acetone for 24 h. Chl a samples were analyzed with a Turner Designs

Fluorometer (TD-700) using manufacturer's standards (Welschmeyer, 1994). Ambient nutrient analyses included NH_4^+ , NO_2^- , NO_3^- , soluble reactive phosphorus (SRP), and total phosphorus (TP) and was performed at the National Center for Water Quality Research (NCWQR) at

183 Heidelberg University.

184 Water samples for kinetic experiments in Maumee Bay were collected on three occasions 185 from site WE6 (July 17, August 14, and October 10), and once from site MB18 (August 9; 186 Fig.1), which is across the shipping channel from, and in close proximity to, WE6 (Fig. 1). 187 Sampling at WE6 occurred in conjunction with NOAA Great Lakes Environmental Research 188 Laboratory (GLERL) weekly sampling, whereas sampling at MB18 was conducted with Ohio 189 State University Stone Laboratory personnel. Surface water (top 1 m) was collected using a 5 L 190 Niskin bottle into a 10 L polyethylene cubitainer and stored in a dark cooler for transport to the 191 lab. Samples for nutrient analyses were immediately filtered in the field into 15 mL clear, 192 polypropylene tubes using 0.2 µm syringe filters (Nylon; Millipore), stored on ice in a dark 193 cooler, and then frozen at -20 °C until analysis. Nutrient analyses (NH₄⁺, NO₂⁻, NO₃⁻, and 194 orthophosphate (OP)) were performed using a Lachat 8500 Quikchem nutrient analyzer (Hach). Note that Sandusky Bay data, analyzed by the NCWQR at Heidelberg university, is reported as 195 196 SRP, whereas the Lachat used for Maumee Bay data measures OP. Chl a and geochemical data 197 (DO and temperature) from WE6 in Maumee Bay were accessed using the NOAA GLERL 198 annual data share and are single measurements for this station.

- 199
- 200 $2.2 NH_4^+$ dynamics

201 NH_4^+ uptake and regeneration experiments followed the protocol described in Hampel et 202 al., (2018). Briefly, 1 L of water from each station was amended with 98% ¹⁵NH₄Cl (Isotec; final 203 concentration added 8–32 μ M based on bloom status; i.e., higher concentrations during heavier

204 blooms to prevent total substrate depletion during incubation), mixed thoroughly, and decanted 205 into six 125 mL, clear Nalgene incubation bottles (three light incubations and three dark). Initial 206 samples were filtered through a 0.2 µm syringe filter, 12.5 mL into 15 mL clear, polypropylene tubes (for total NH_4^+ analysis) and 12 mL with no headspace into Exetainers (for ${}^{15}NH_4^+$ 207 208 analysis). Dark bottles were wrapped with aluminum foil and submerged with unwrapped light 209 bottles outside, submerged in water at near-ambient light and temperature for 18 h. After the incubation period, final samples were collected as described for initial samples. Total $({}^{14}N + {}^{15}N)$ 210 NH_4^+ concentrations were analyzed using the Lachat nutrient analyzer. $^{15}NH_4^+$ concentrations 211 212 were measured using membrane inlet mass spectrometry (MIMS; Kana et al., 1994) combined with oxidation to N_2 gas (OXMIMS; Yin et al. 2014). Samples for ${}^{15}NH_4^+$ analysis were treated 213 with 200 μ l of hypobromite iodine solution (oxidizes ¹⁵NH₄⁺ to ^{29/30}N₂) and immediately 214 measured on the MIMS. ${}^{15}NH_4^+$ standards (from 0.1 to 100 μ M) were analyzed at the beginning 215 and the end of each sample run. ¹⁵NH₄⁺ concentrations were determined using the line equation 216 from the standard curve and total ${}^{15}N_2$ production (${}^{29}N_2 + 2 * {}^{30}N_2$; Yin et al., 2014). 217 218 Potential NH_4^+ uptake rates and actual regeneration rates were calculated using the 219 Blackburn/Caperon isotope dilution model (Blackburn, 1979; Caperon et al., 1979; McCarthy et al., 2013). In this model, potential uptake is calculated from the depletion of both ${}^{14}NH_4^+$ and 220

 15 NH₄⁺ pools, and regeneration is measured from dilution of the total NH₄⁺ pool by regenerated

- 222 ¹⁴NH₄⁺ and is considered an actual rate (Gardner et al., 2017).
- 223

224 2.3 Community Biological Ammonium Demand (CBAD)

CBAD is a conceptual model of internal NH₄⁺ cycling proposed by Gardner et al. (2017).
 CBAD is represented by the difference between measured potential NH₄⁺ uptake rates and actual

regeneration rates during a bloom and reflects the net microbial community demand for NH_4^+ .

228 Average values for CBAD in light and dark incubations were calculated as:

229 $CBAD = ([NH_4^+]_0 - [NH_4^+]_t) / t$

230 where $[NH_4^+]_0$ is total $({}^{14}N+{}^{15}N)$ NH_4^+ concentration at the initial time of incubation, $[NH_4^+]_t$ is

231 the total NH_4^+ concentration at the end of the incubation, and t is elapsed time in hours.

232 2.4 Kinetic experiment

The Michaelis–Menten model (Caperon and Meyer, 1972; Martens-Habbena et al., 2009) was used to explore the kinetics of NH_4^+ uptake during *Planktothrix* and *Microcystis* blooms and investigate the dependence of uptake rate on substrate concentrations. This model relates the reaction rate and substrate concentration following the formula:

237
$$V_0 = (V_{max} [S]) / K_m + [S]$$

238

239 Where V_{max} is the maximum velocity of the reaction, S is the substrate concentration, and K_m is 240 the substrate concentration at $\frac{1}{2} V_{max}$.

241 To investigate the competitive abilities of different cyanobacteria in different parts of 242 Lake Erie, water from Sandusky Bay and Maumee Bay was collected as described above. 243 Unfiltered surface water collected in the field was transported to the lab and decanted into seven 125 mL, clear Nalgene bottles. One bottle was designated as a control and received no ¹⁵N 244 additions. The remaining bottles were amended with increasing ${}^{15}NH_4^+$ concentrations ranging 245 246 from 0.25 µM to 16 µM at 5–6 substrate levels in Sandusky Bay and 4–5 in Maumee Bay. This 247 range of concentrations was chosen based on preliminary trials. The kinetic experiment followed the protocol for NH₄⁺ dynamics described above. Bottles were incubated at *in situ* temperature 248 and light for 5 h on June 5, June 26, July 17, July 31, August 28, and October 10, 2017. On 249 August 14, incubation time was limited to 15 min due to rapid NH_4^+ depletion. Uptake rates were 250

calculated as above and plotted against spike concentrations using Kaleidagraph software
(version 4.5.3) to create the Michaelis–Menten curve. Additionally, the Michaelis–Menten model
was run in RStudio (version 1.1.383) with the drm package (version 0.5-8) for combined
regression and association models.

255

257

256 2.5 Metatranscriptomic analyses

Biomass (500 mL) from several dates (June 8, June 22, July 6, July 13, August 3, and 258 259 August 31) during the summer 2015 bloom was collected in the field onto 0.2 µm Sterivex 260 cartridges, stored on dry ice, and placed in the -80 °C freezer until extractions. RNA was 261 extracted using the Mo Bio PowerWater SterivexTM DNA Isolation Kit (now available as Qiagen 262 DNeasy® PowerWater® SterivexTM Kit), with the alternate RNA Isolation protocol. Extracted 263 RNA (3-5 µg per sample) was stored at -80 °C until it was sent to HudsonAlpha Institute for 264 Biotechnology (Huntsville, AL) for RNA sequencing, where they were treated to reduce rRNA. 265 The reads were single-end reads of 50 base pairs. All samples were from outer Sandusky Bay 266 site ODNR 1, except for the June 8 sample taken at outer bay station EC 1163.

267 The metatranscriptome reads were trimmed, underwent quality control (QC) analysis, and 268 then were assembled using the CLC Workbench software version 9.5.3 (Qiagen). The CLC 269 Workbench 9.5.3 program removed failed sequences that did not pass QC according to the 270 default parameters. The remaining reads were assembled *de novo* into contigs, then mapped back 271 to assembled contigs using the reference genomes. Aligned RNA transcripts (RNAseq) files 272 were aligned to the following reference genomes: Sulfurimonas denitrificans DSM 273 1251, Microcystis aeruginosa NIES-843, Desulfovibrio magneticus RS-1, Desulfovibrio 274 desulfuricans ND132 (Final JGI assembly), Anabaena cylindrica PCC 7122, Aphanizomenon

flos-aquae NIES-81, *Klebsiella pneumoniae* 1158, and *Burkholderia pseudomallei* K96243. The
reference genomes were concatenated into a single reference library. An annotated genome of *Planktothrix agardhii* from Sandusky Bay was obtained from Dr. Greg Dick at the University of
Michigan. These were selected to represent the different cyanobacteria and N fixers present in
metagenomic datasets obtained previously from Sandusky Bay.

280 The reference genomes were confirmed for the presence of *cphA*, *cphB*, *amt*, *glnA*, and 281 nifH genes by implementing a gene search on JGI IMG/M using the aforementioned sequences 282 plus Planktothrix agardhii NIVA CYA 126/8. The BLAST tool of the CLC Workbench program 283 was used to search for the gene sequence from each species of the reference genomes. Hits were 284 obtained with outputs of % identity, Greatest Hit Lengths, and E values for assessing relatedness 285 of the genes. Each of these sequences were then reconfirmed using the BLASTn and/or BLASTx 286 function using the NCBI database with the "dissimilar sequence" setting. The RNAseq files for 287 each date and site were filtered to find the corresponding Reads per Kilobase transcript per 288 Million mapped reads (RPKM) value for the gene in question.

289

290 2.6 Statistical analysis

All statistical analyses were performed using RStudio software (version 1.1.383). Environmental data were checked for normality using the Shapiro–Wilk normality test. Temperature and TP were the only normally distributed variables. To investigate potential environmental drivers of NH_4^+ dynamics, a multivariate correlation analysis was performed using the Spearman correlation method for nonparametric data. A *p*-value of < 0.05 was considered statistically significant.

3. Results

299 3.1 Environmental variables in Sandusky and Maumee Bays

Water temperature in Sandusky Bay ranged from 20.4 °C to 24.5 °C (Table 1). DO 300 concentrations ranged from 9.18 to 9.71 mg L⁻¹ between June and August 14 and decreased at 301 the end of August (8.67 mg L^{-1}). Chl *a* concentrations showed seasonal variability, with greatest 302 values at the end of June (mean = $75.2 \pm 27.7 \ \mu g L^{-1}$) and in July (mean = $122 \pm 74.5 \ \mu g L^{-1}$), 303 and lower concentrations in August (mean = 44.0 \pm 21.4 µg L⁻¹; p < 0.05). Chl *a* concentrations 304 305 also varied spatially, with the Bells station in Lake Erie ranging from 5.80 to 44.8 μ g L⁻¹, significantly lower than the ODNR stations $(31.3 - 172 \mu g L^{-1}; p < 0.05)$. Lowest Chl a 306 concentrations at Bells corresponded with greatest Secchi depths at this station (80 - 132 cm). At 307 ODNR stations, within Sandusky Bay, Secchi depths were 32 – 43 cm throughout the summer 308 309 (not measured in July). 310 NH₄⁺ concentrations in Sandusky Bay showed slight variation between June and August 311 14 (mean = $2.63 \pm 0.49 \mu$ M; Table 1) but decreased significantly by August 28 (mean = $1.02 \pm$ 312 0.32 μ M; p < 0.001). NO₂⁻ concentrations were below the detection limit at all times except July 313 31 at all stations and August 14 at Bells (Table 1). NO₃⁻ concentrations gradually decreased from $62.0 - 251 \mu$ M at the beginning of June to $0 - 1.43 \mu$ M in August. SRP concentrations were 314 315 lowest in June (mean = $0.20 \pm 0.09 \,\mu$ M) and greater in August ($0.50 \pm 0.20 \,\mu$ M; Table 1). 316 Water temperature in Maumee Bay decreased from 23.9 °C - 25.1 °C in August to 20.7

317 °C in October (Table 2). DO peaked in mid-August (9.59 mg L⁻¹) and was lower in July (5.87

318 mg L^{-1}) and October (5.72 mg L^{-1}). Chl *a* increased from June (3.5 µg L^{-1}) to August (532 µg L^{-1})

 319^{-1}) and decreased to $40.9 \ \mu g \ L^{-1}$ in October. Secchi depth was 50 cm in October and 20 cm in

320 August and June. Ambient NH_4^+ concentrations in Maumee Bay were highest in July (6.29 ±

 $0.03 \ \mu M$) and decreased to undetectable by October. NO₂⁻ concentrations were highest in July $(5.13 \pm 0.02 \ \mu M)$ and decreased to $0.02 \pm 0.001 \ \mu M$ in October. A similar pattern was observed

for NO₃⁻ concentrations, with highest values in July (400 ± 0.9 μ M) and lowest in October (0.40 ± 0.001 μ M). OP was also highest in July (4.32 ± 0.04 μ M) and decreased to 0.17 ± 0.01 μ M in October.

326

328

321

322

327 *3.2 Potential NH*⁺ uptake rates in Sandusky Bay

329 Potential NH_4^+ uptake rates in light incubations ranged from 0.06 to 3.12 µmol L⁻¹ h⁻¹

330 (Fig. 2A). Lower rates were consistently observed at Bells (mean = $0.16 \pm 0.01 \mu \text{mol } \text{L}^{-1} \text{ h}^{-1}$)

versus ODNR stations (mean = $1.78 \pm 0.18 \mu \text{mol } \text{L}^{-1} \text{ h}^{-1}$; p < 0.005). Light uptake rates at ODNR 331 4, 6, and 2 were not different from each other (p > 0.05). At all stations, potential uptake rates in 332 333 light incubations increased through the summer bloom, with lowest rates in June (mean = $0.53 \pm$ 0.08 μ mol L⁻¹ h⁻¹), higher rates in July (mean = 1.00 ± 0.07 μ mol L⁻¹ h⁻¹), and highest rates in 334 August (mean = $1.99 \pm 0.20 \,\mu$ mol L⁻¹ h⁻¹). However, differences were only significant between 335 June and August (p < 0.05). Light NH₄⁺ uptake rates were positively correlated to ambient SRP 336 337 and TP concentrations and Chl a (Spearman p < 0.005) and negatively correlated to ambient 338 NO_3^- concentrations and Secchi depth (Spearman p < 0.05; Table 3).

Botential NH_4^+ uptake rates in dark incubations ranged from 0.02 to 3.00 µmol L⁻¹ h⁻¹

340 (Fig. 2B). Lowest dark uptake rates were observed at Bells (mean = $0.09 \pm 0.01 \mu \text{mol } \text{L}^{-1} \text{ h}^{-1}$);

341 however, the statistical significance of this difference from the ODNR stations was marginal (p =

342 0.08). The three ODNR stations did not exhibit significant differences in dark uptake (mean =

343 $1.22 \pm 0.04 \,\mu\text{mol L}^{-1} \,\text{h}^{-1}$; p > 0.5). Dark rates also increased throughout the summer, with lowest

rates in June (mean = $0.09 \pm 0.01 \mu \text{mol } \text{L}^{-1} \text{ h}^{-1}$), higher rates in July (mean = $0.22 \pm 0.01 \mu \text{mol } \text{L}^{-1}$)

 1 h⁻¹), and highest rates in August (mean = $1.72 \pm 0.06 \mu$ mol L⁻¹ h⁻¹). Dark rates in August were

statistically different from those in June and July (p < 0.05). Dark uptake rates were positively correlated to SRP and TP concentrations (Spearman p < 0.05) and negatively correlated to NO₃⁻ concentration (Spearman p < 0.05; Table 3). Light and dark NH₄⁺ uptake rates were statistically different from each other only in July (p = 0.05), and neither were correlated to ambient NH₄⁺ concentrations.

351

352 3.3 Actual NH_4^+ regeneration rates in Sandusky Bay

NH₄⁺ regeneration rates in light and dark incubations were not statistically different, so 353 they were averaged together (Fig. 2C). Averaged NH_4^+ regeneration rates ranged from 0 to 1.54 354 μ mol L⁻¹ h⁻¹. Regeneration rates at Bells (mean = 0.05 ± 0.01 μ mol L⁻¹ h⁻¹) were an order of 355 magnitude lower than at ONDR stations (mean = $0.75 \pm 0.10 \text{ }\mu\text{mol }L^{-1} \text{ }h^{-1}$; p < 0.05). NH₄⁺ 356 regeneration rates increased from June (mean = $0.23 \pm 0.04 \mu mol L^{-1} h^{-1}$) to July (mean = $0.34 \pm$ 357 358 0.04 μ mol L⁻¹ h⁻¹) and August (0.87 \pm 0.12 μ mol L⁻¹ h⁻¹), and a statistical difference was observed between June and August (p = 0.05). Regeneration rates were positively correlated to 359 TP and Chl *a* concentrations (Spearman p < 0.05) and negatively correlated to NO₃⁻ 360 concentration and Secchi depth (Spearman p < 0.05). 361 362 363 *3.4 CBAD* CBAD followed a similar pattern as NH₄⁺ uptake rates (Fig. 3A), increasing from June 364 $(\text{mean} = 0.23 \pm 0.01 \text{ umol } \text{L}^{-1} \text{ h}^{-1})$ to August $(\text{mean} = 1.07 \pm 0.03 \text{ umol } \text{L}^{-1} \text{ h}^{-1})$ across all 365 stations. Light CBAD values during the two sampling trips in August were twice as high as the 366

367 average of the other months (mean = $0.33 \pm 0.01 \ \mu \text{mol } \text{L}^{-1} \ \text{h}^{-1}$).

368 Dark CBAD also increased over the summer (Fig. 3B), starting with negative values 369 (reflecting net NH_4^+ regeneration) in June. By the end of August, dark CBAD (1.05 ± 0.02 µmol 370 $L^{-1} h^{-1}$) was as high as light CBAD (1.12 ± 0.03 µmol $L^{-1} h^{-1}$). Light and dark CBAD were lowest 371 at Bells (0.10 ± 0.01 and 0.03 ± 0.01 µmol $L^{-1} h^{-1}$, respectively).

372

373 $3.5 NH_4^+$ uptake kinetics

374 K_m values in Sandusky Bay were highest in June ($K_m = 8.7 \mu M$; Fig. 4A) and ranged 375 from 1.4 to 1.8 μM in subsequent experiments. However, V_{max} increased from July to the end of 376 August (1.52 to 27.1 μ mol L⁻¹ h⁻¹, respectively).

377 K_m values in Maumee Bay showed the opposite pattern than observed in Sandusky Bay 378 (Fig. 4B). K_m values increased from July (K_m = 0.32μ M) to the highest value in October (K_m = 379 8.52 μ M). However, V_{max} in Maumee Bay remained in a tight range from 0.20 to 0.53 μ mol L⁻¹ 380 h⁻¹ for all experiments.

381

383

382 3.6 Metatranscriptomic analysis of N metabolism

384 During 2015, a series of Sandusky Bay metatranscriptomes obtained from June 8 to 385 August 31 examined cphA, cphB, amt, glnA, and nifH gene expression in P. agardhii during the 386 onset of N limitation (Fig. 5). *Planktothrix* expressed two distinct *cphA* genes, but at different 387 times in the season corresponding to N availability. Planktothrix has the cphBA operon and an 388 independent cphA (Forchhammer and Bjorn, 2016). The independent cphA (cphA1) was 389 expressed when N was replete. *cphA2* was expressed, along with *cphB*, when N levels were low. 390 No Microcystis cphA expressions were detected. In early summer, when NH_4^+ and NO_3^- concentrations were high (Fig. 5A, B) due to 391 392 riverine discharge following spring rains (Salk et al., 2018), cphA1 was highly transcribed, 393 suggesting luxury N storage via cyanophycin synthesis (Gupta and Carr 1981; Allen 1984;

Forchhammer and Bjorn 2016). When NH_4^+ and NO_3^- were depleted in late summer, no *cphA1*

395expression was detected, and *cphBA2* operon transcription was activated (Fig. 5A), suggesting396cyanophycin degradation (Richter et al., 1999; Ponndorf et al., 2017) as an adaptation to N397limitation. Reflecting the increased competition for N was the expression of *glnA* in late summer,398encoding glutamine synthetase, the high affinity assimilation pathway for NH_4^+ (Reyes et al.,3991997). Genes for NH_4^+ transporters *amt1* and *amt3* were transcribed constitutively throughout400the summer (Fig. 5B).

Earlier work documented the presence of a minor community of N-fixing cyanobacteria
during the *Planktothrix*-dominated bloom (Salk et al. 2018). 16S rRNA reads assigned to *Nostocales* (predominantly *Aphanizomenon* spp. and *Dolichospermum* spp.) reached up to 25%
of total cyanobacterial reads on a few occasions in 2015 before complete N depletion (Fig. 5B),
but *Nostocales* reads were usually very low.

406 407 408 **4.** Discussion 409 410 4.1 Potential NH_4^+ uptake and CBAD 411 Nutrient concentrations and NH₄⁺ dynamics exhibited expected patterns during the 2017 412 413 *Planktothrix* bloom in Sandusky Bay. After bloom initiation, DIN concentrations in the bay 414 decreased to low or undetectable levels (Table 1), with NO₃⁻ often below detection, and detectable but low NH_4^+ concentrations. This pattern is consistent with previous work in 415 416 Sandusky Bay (Chaffin et al., 2018; Salk et al., 2018) and suggests a high demand and 417 competition for N in late summer. NH₄⁺ uptake rates in light incubations increased throughout 418 the summer at all stations, with late August rates approximately four times higher than those in June in the bay (ODNR 2, 4, and 6) and five times greater outside of the bay at Bells (Fig. 2A). 419 420 As expected, these light uptake rates were correlated positively with Chl a (p < 0.005; Table 3),

421 suggesting an increase in photoautotrophic activity. At Bells, where Chl *a* was consistently 422 below bloom thresholds (< $20 \ \mu g \ L^{-1}$; Xu et al., 2015), NH₄⁺ uptake rates (and CBAD) were 423 predictably lower than those at sites within Sandusky Bay. The NH₄⁺ uptake rates reported in this 424 study for Sandusky Bay are consistent with those reported in other freshwater, eutrophic, 425 cyanoHAB-impacted lakes (Gu et al., 1997; Présing et al., 2001; James et al., 2011; McCarthy et 426 al., 2013; Hampel et al., 2018).

427 Light uptake rates reported in this study are an order of magnitude greater that those 428 reported recently in Sandusky Bay (Salk et al., 2018). In comparison with similarly eutrophic 429 systems, those rates were exceptionally low, indeed more comparable to those measured in 430 oligotrophic lakes (e.g., Suttle and Harrison 1988), including Lake Michigan in late winter and 431 spring (Gardner et al., 2004). Stable isotope additions used in Salk et al., (2018) were tracer-level (i.e., <10 % of the ambient DIN pool) and may have underestimated NH_4^+ cycling rates due to 432 433 complete substrate depletion before incubations were ended (Paasche 1988). Substrate depletion 434 is especially problematic in highly productive systems, like Sandusky Bay; thus, we applied saturating-level stable isotope amendments, which are better suited for highly dynamic, 435 436 eutrophic systems with high cyanobacterial biomass. Saturating additions of substrate can alter steady-state conditions (Glibert et al., 1988); therefore, NH_4^+ uptake rates reported in this study 437 438 are qualified as potential rates, but results from saturating- and tracer-level isotope amendments tend to converge in eutrophic systems with high ambient NH₄⁺ concentrations (Glibert et al., 439 440 1982).

441 Dark NH_4^+ uptake rates also increased with time at the bay stations and, to a lesser extent, 442 at Bells (Fig. 2B). By late August, dark NH_4^+ uptake rates were not distinguishable from light 443 uptake rates. Dark uptake rates in Sandusky Bay were higher than those observed in other eutrophic lakes affected by cyanoHABs (James et al., 2011; McCarthy et al., 2013; Hampel et al., 2018), suggesting an important role for heterotrophic organisms. Some photoautotrophs can assimilate NH_4^+ in the dark under N limiting conditions (e.g., Cochlan et al., 1991); however, our saturating-level ¹⁵NH₄⁺ additions likely minimized this effect. Dark uptake rates were not correlated with Chl *a* concentration (Table 3); thus, when NH_4^+ is scarce and competition for NH₄⁺ is extreme in late summer, heterotrophic partnerships with cyanobacteria in the phycosphere may become important (Steffen et al., 2012).

451 The phycosphere concept was introduced by Bell and Mitchel (1972) and is analogous to 452 the rhizosphere concept in soils. In mixed microbial assemblages, heterotrophic bacteria can 453 simultaneously regenerate and assimilate NH_4^+ (Tupas and Koike, 1991). These bidirectional 454 interactions have been studied in diatoms, dinoflagellates, and other cyanobacteria (Amin et al., 455 2015; Lupette et al., 2016), yet little is known about phycosphere interactions during 456 cyanobacterial blooms. Phycosphere interactions might play a key role in dynamic, eutrophic 457 ecosystems, where competition for nutrients is high, and microbial interactions in the water 458 column are complex. For example, NH_4^+ uptake by heterotrophic bacteria has been previously 459 studied, mostly in marine environments (Kirchman et al., 1990; Tupas and Koike, 1991). 460 Heterotrophic uptake of NH_4^+ in the light has been shown to increase with decreasing ambient 461 concentrations (Kirchman et al., 1990), suggesting that heterotrophic bacteria can outcompete 462 phytoplankton at low NH₄⁺ concentrations. Our NH₄⁺ cycling patterns support these findings and 463 suggest that Sandusky Bay exhibits similarly complex microbial interactions between 464 cyanobacteria and heterotrophic partners.

465 The CBAD model represents NH_4^+ dynamics and microbial productivity in N depleted 466 systems (Gardner et al., 2017), and thus is a useful metric to investigate NH_4^+ cycling in

20

21

467 Sandusky Bay. CBAD reflects the demand of the entire microbial community, including (light 468 CBAD) and excluding photoautotrophs (dark CBAD; Gardner et al., 2017), assuming that 469 photoautotrophs were not active in dark incubations. Within the bay, light CBAD followed the 470 pattern of light uptake rates, with the largest increase observed between July 31 and August 14. Dark CBAD was negative, reflecting net NH₄⁺ regeneration by the microbial community, or low 471 472 in June and July (Fig. 3), indicating that demand for NH_4^+ in the dark was largely met by the 473 supply from regeneration (Gardner et al., 2017). However, dark CBAD was not distinguishable 474 from light CBAD in August, concomitant with decreased chlorophyll, suggesting that the 475 increased dark CBAD reflects increased demand by non-photoautotrophs.

476 $4.2 NH_4^+$ Regeneration

477 NH_4^+ regeneration rates at ODNR 6, 4, and 2 followed the same general pattern as uptake rates, with lowest values in June and highest in August. At these stations, regeneration rates at 478 479 the end of August were almost twice as high as those in June, suggesting that N depletion by the 480 bloom caused photoautotrophs to rely on regenerated NH₄⁺ from increased heterotrophic activity 481 and bloom biomass remineralization to support growth. While regeneration can supply 482 substantial amount of NH_4^+ , high biomass creates a great demand for N in August. The 483 proportion of uptake supported by regeneration increased throughout the summer (Fig. 2C). In outer Sandusky Bay (ODNR 2), regeneration could support 36 - 40% of potential light NH_4^+ 484 485 uptake. This proportion increased to 50% by the end of August, a pattern that is magnified in 486 potential importance considering the large increase in uptake rates from June to August. 487 Increasing dependence on regeneration corresponded with low ambient N concentrations in the bay, further highlighting the important role of recycled NH₄⁺ in supporting cyanoHAB growth 488 489 and bloom maintenance. Other cyanoHAB-impacted lakes exhibit similar patterns of

490 dependence on NH_4^+ regenerated in the water column, including Lake Taihu (Paerl et al. 2011;

- 491 Hampel et al., 2018), Lake Balaton (Présing et al., 2001), Lake Biwa (Haga et al., 1995;
- 492 Takahashi et al., 1995), and Missisquoi Bay, Lake Champlain (McCarthy et al. 2013).

To compare regenerated NH_4^+ rates in the water column to external N loading, we 493 extrapolated average NH_4^+ regeneration rates from ODNR 6, 4, and 2 to the whole-bay volume 494 (0.423 km³; Conroy et al., 2007). Daily Sandusky River flow data and total N (TN) and total 495 Kjeldahl N (TKN; TN = TKN + NO_3^{-} + NO_2^{-}) concentrations from 2017 were obtained from the 496 497 NCWQR (https://ncwqr.org) and used to calculate daily and annual external N loading. Annual 498 TN loading from the Sandusky River (October 2016 – September 2017; the NCWQR database was not updated beyond September 2017 as of manuscript preparation) introduced 8.58×10^3 499 metric tons of N into the bay during this 12 month period. Average summer regeneration from 500 our incubations (June–August 2017) recycled 6.6×10^3 metric tons of N as NH₄⁺. In just the 501 502 three summer months evaluated, regeneration in the water column provided bioavailable N for 503 primary production at the level equivalent to $\sim 77 \pm 7\%$ of the annual N load.

504 When extrapolated to the whole bay volume, daily NH_4^+ regeneration exceeded daily TN 505 loading at all sampling events (Table 4). During the week of June 5, regeneration contributed 2– 506 5 times more N than the Sandusky River. During the week of July 31, regeneration provided 25-507 53 times more N than the river and, by the end of August, over 1000 times more N than the river 508 (Table 4). While the contribution of regeneration increased throughout the summer, TN and 509 TKN loading from the river decreased along with discharge. However, the proportion of TKN to TN in Sandusky River loading increased from 13.2 % at the beginning of June to 91.9% by the 510 511 end of August (Table 4), highlighting the importance of considering N forms and potential 512 bioavailability in external loading.

513 This exercise exemplifies the critical role of internally recycled NH₄⁺ during summer in 514 sustaining the *Planktothrix* bloom, especially when ambient N was depleted. The large mass of internally recycled NH₄⁺, driven by high external N loads from the watershed, is critical 515 516 information for resource managers and regulators, who often base management decisions on 517 ecosystem models that do not sufficiently consider the effects of internal N dynamics on 518 eutrophication issues. Monitoring nutrient concentrations in eutrophic systems, while valuable, 519 does not provide a sufficient characterization of these nutrient dynamics. High microbial demand 520 and turnover rates can cause highly bioavailable nutrients, such as NH_4^+ , to be undetectable or 521 measured at low concentrations, even though their recycling rates are largely supporting system 522 productivity at critical times (McCarthy et al., 2013).

523 $4.3 NH_4^+$ uptake kinetics

524 Kinetic NH_4^+ uptake experiments in Sandusky and Maumee Bays exhibited opposite 525 patterns, suggesting that these microbial communities were distinctive (Fig. 4). K_m is often used 526 to represent the affinity of a microbe for a substrate. Microbes with a low K_m have a competitive 527 advantage at low nutrient concentrations and are excellent scavengers (Martens-Habbena et al., 528 2009). However, microbes with a high K_m thrive at high substrate concentrations and can 529 assimilate more substrate before reaching saturation. With different K_m values, microbes can fill 530 different niches in the environment to maximize their competitive abilities.

531 In Sandusky Bay (*Planktothrix*-dominated community; Davis et al., 2015; Salk et al., 532 2018), the highest K_m was observed in June, and it then decreased and stabilized throughout July 533 and August. While K_m remained relatively constant in July and August, we observed a dramatic, 534 significant increase in V_{max} from the end of July ($V_{max} = 1.52 \mu mol L^{-1} h^{-1}$) through August (V_{max} 535 = 27.1 $\mu mol L^{-1} h^{-1}$), which reflects strong competition for depleted NH₄⁺. The increase in V_{max}

536	corresponded to significant increases in dark NH_4^+ uptake rates between the end of July and
537	through August (Fig. 2). When NH_4^+ availability in the water column is low, dead and dying
538	cells may be rapidly remineralized in the phycosphere, which may help explain increased
539	heterotrophic activity (e.g., Gardner and Lee 1975). The constant and relatively low K_m of the
540	late summer, <i>Planktothrix</i> -dominated community illustrates the strong affinity for NH_4^+ during
541	N limited conditions. K_m values reported for NH_4^+ in <i>Planktothrix</i> are lacking both in culture and
542	natural environments. One study investigated NH_4^+ uptake kinetics in chemostats under NO_3^-
543	limitation and reported K_m values of $8\pm3\mu M$ (Zevenboom and Mur, 1981), which are
544	comparable to our values from June, but higher than those from late summer.
545	In contrast, K_m values in Maumee Bay increased from July (0.32 μ M) to August (3.53
546	μ M) and October (8.52 μ M). This pattern may reflect the rapid increase in <i>Microcystis</i> -
547	dominated cyanoHABs in Maumee Bay commonly observed in August and lasting into October
548	(Steffen et al., 2014). Unlike Sandusky Bay, V_{max} in Maumee Bay was consistent (0.20–0.53
549	μ mol L ⁻¹ h ⁻¹), perhaps suggesting that competition for NH ₄ ⁺ in Maumee Bay was less intense than
550	in Sandusky Bay. The Maumee River watershed (21,540 km ²) is 4.5 times larger than the
551	Sandusky River watershed (4,727 km ²), and, accordingly, the Maumee River supplied 66.8
552	metric tons of TN to western Lake Erie in August 2017, while the Sandusky River supplied 13.2
553	metric tons of TN to Sandusky Bay (NCWQR). DIN concentrations in 2017 were very low in
554	Sandusky Bay from August through late summer (Table 1), but DIN concentrations were still
555	high (> 100 μ M, mostly comprised of NO ₃ ⁻) in Maumee Bay in August (Table 2). Thus, while
556	DIN in Sandusky Bay was scarce, Microcystis was not as substrate limited, perhaps affecting
557	measured K_m and V_{max} values. Additionally, light and dark NH_4^+ uptake (0.125 and 0.058 μ mol
558	$L^{-1}h^{-1}$, respectively) and regeneration rates (0.162 µmol $L^{-1}h^{-1}$) at MB18 in August were 10–20

times lower than those in Sandusky Bay (Hampel et al., unpublished data). These results support
the hypothesis that substrate competition was not as extreme in Maumee Bay as in Sandusky
Bay.

The reported range of *Microcystis* K_m values is broad, including values up to 37 μ M in culture (Niklish and Khol 1983) and 113 μ M in hypereutrophic Lake Taihu (Yang et al., 2017). Thus, *Microcystis* can assimilate substantial amounts of NH₄⁺ before becoming saturated. Overall, the results of this kinetic comparison suggest that, during the peak of a summer bloom when NH₄⁺ was depleted, *Planktothrix* had a competitive advantage in its high affinity for NH₄⁺, while N conditions in larger Maumee Bay allowed for less competition for substrate in the *Microcystis*-dominated community.

569

571

570 4.4 Metatranscriptome

572 The transcriptional data in this paper address gene expression for N assimilation and 573 storage functions within an active bloom. The data differ from what is observed in pure cultures 574 of model cyanobacteria. Studies with Dolichospermum (Anabaena) and Synechocystis reveal 575 cyanophycin synthesis during decreases in N, and amendment of N-starved cyanobacteria with 576 exogenous NH₄⁺ resulted in accumulation of cyanophycin (Mackerras et al., 1990). Cyanophycin 577 is also responsive to shifts in light and nutrients (Allen, 1984; Van de Waal et al., 2010). It is 578 unclear how these other factors may influence *cphA1* and *cphBA2* expression, but the pattern 579 observed in Sandusky Bay suggests that cyanophycin synthesis and degradation is a strategy for 580 *Planktothrix* success in a system prone to strong shifts in N availability. The expression of glnA, 581 under the control of ntcA, a transcriptional activator and sensor of intracellular C:N ratios (Zhao 582 et al., 2010), is also consistent with the observed declines in N concentrations. The amt 583 expression is present across the sampling season and consistent with N supply from regeneration.

584 Patterns of N depletion in the summer and sustained Planktothrix blooms are well-585 documented in Sandusky Bay (Davis et al., 2015; Chaffin et al., 2018; Salk et al., 2018). The 586 community composition in the present study resembled that of all prior years sampled: 587 Planktothrix-dominated, with a minor fraction (5-20% of 16S rRNA reads) of N fixing 588 cyanobacteria (Salk et al., 2018). While the field study described here was completed in 2017, 589 metatranscriptomic data from 2015 can help elucidate genetic mechanisms for physiological 590 processes underlying *Planktothrix* success in an N limited system. Early in the summer, when 591 ambient bioavailable N concentrations were greater, genes for synthesis of the N-rich compound 592 cyanophycin were transcribed, suggesting luxury uptake and N storage, as demonstrated in 593 laboratory studies (Van de Waal et al., 2010). As ambient N was depleted late in the summer, the 594 cyanophycinase gene was transcribed, mobilizing stored N from an intracellular pool to help meet metabolic N requirements. Concurrently, glnA, transcribed following N depletion, and 595 596 constitutive *amt* transcription reveal active mechanisms to acquire extracellular NH_4^+ . Together, 597 these mechanisms of luxury uptake during N replete conditions, and high affinity NH₄⁺ transport 598 throughout the bloom, contribute to *Planktothrix* dominance as N is depleted in summer. 599 Despite the dominance of *Planktothrix* in Sandusky Bay for most of the bloom season, 600 both cyanobacterial N-fixation (Salk et al., 2018) and nif transcription were detected as N concentrations decreased, supporting the interpretation from NH_4^+ dynamics and transcriptomic 601 602 results that the cyanobacterial community evolved to N limitation over the course of the bloom 603 season. 604

00-

606

```
605 5. Conclusions
```

607 The results presented in this study highlight the dynamic nature of eutrophic Sandusky
608 Bay during the *Planktothrix* bloom. Specifically, we emphasize the importance of internal NH₄⁺

609	regeneration in sustaining summer non-N2 fixing CyanoHABs, and likely influencing their
610	toxicity as well (Davis et al., 2015). Internal NH_4^+ cycling and rapid NH_4^+ turnover rates should
611	be considered in ecosystem models used to inform nutrient management strategies, which should
612	incorporate dual nutrient management (N and P) efforts to prevent and mitigate non-N $_2$ fixing
613	cyanoHABs in eutrophic lakes. Monitoring NH_4^+ turnover rates, rather than focusing solely on
614	ambient nutrient monitoring, can improve our understanding of the aquatic N cycle in eutrophic
615	lakes affected by cyanoHABs and how regeneration contributes to sustaining cyanoHABs.
616 617 618 619	Acknowledgments:
620	We thank the Ohio Department of Natural Resources for providing access to boat time for
621	sampling in Sandusky Bay and NOAA GLERL and the Ohio State University Stone Laboratory
622	(Dr. Justin Chaffin) for boat access for sampling in Maumee Bay. We thank Megan Reed,
623	Allison Savoie, and Ashlynn Boedecker for help in the lab. We also thank Taylor Tuttle, Daniel
624	Hoffman, and NOAA GLERL for collecting water samples, and Ashley Burtner from NOAA
625	GLERL for access to the data share. Project support was provided by Ohio Sea Grant awards to
626	SEN (#60053689) and MJM (#R/ER-113) and NSF Molecular and Cell Biology (#1715909) to
627	SEN. Partial support was provided by award R/ER 114 from the Ohio Sea Grant College
628	Program (to GSB).
629 630 631 632	

633 **References:**

- 634
- 635 Allen, M. M., 1984. Cyanobacterial cell inclusions. Annu. Rev. Microbiol. 38, 1–25.
- Amin, S.A., Hmelo, L.R., van Tol, H.M., Durham, B.P., Carlson, L.T., Heal, K.R., Morales,
 R.L., Berthiaume, C.T., Parker, M.S., Djunaedi, B., Ingalls, A.E., Parsek, M.R., Moran,
 M.A., Armbrust, E. V., 2015. Interaction and signalling between a cosmopolitan

639 phytoplankton and associated bacteria. Nature 522, 98–101.

- An, S., Joye, S.B., 2001. Enhancement of coupled nitrification-denitrification by benthic
 photosynthesis in shallow estuarine sediments. Limnol. Oceanogr. 46, 62–74.
- Bell, W., Mitchell, R., 1972. Chemotactic and growth responses of marine bacteria to algal
 extracellular products. The Biological Bulletin 143, 265–277.
- Blackburn, T.H., 1979. Method for Measuring Rates of NH(4) Turnover in Anoxic Marine
 Sediments, Using a N-NH(4) Dilution Technique. Appl. Environ. Microbiol. 37, 760–765.
- Blomqvist, P., Pettersson, A., Hyenstrand, P., 1994. Ammonium-nitrogen: A key regulatory
 factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems. Arch.
 Hydrobiol. 132, 141–164.
- 649 Caperon, J., Meyer, J., 1972. Nitrogen-limited growth of marine phytoplankton—2. Uptake
 650 kinetics and their role in nutrient limited growth of phytoplankton. Deep-Sea Res. 19, 619–
 651 632.
- Caperon, J., Schell, D., Hirota, J., Laws, E., 1979. Ammonium excretion rates in Kaneohe Bay,
 Hawaii, measured by a 15N isotope dilution technique. Mar. Biol. 54, 33–40.
- Chaffin, J.D., Bridgeman, T.B., 2014. Organic and inorganic nitrogen utilization by nitrogen stressed cyanobacteria during bloom conditions. J. Appl. Phycol. 26, 299–309.
- Chaffin, J.D., Davis, T.W., Smith, D.J., Baer, M.M., Dick, G.J., 2018. Interactions between
 nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and
 microcystin production. Harmful Algae 73, 84–97.
- Cochlan, W.P., Harrison, P.J., Denman, K.L., 1991. Diel periodicity of nitrogen uptake by
 marine phytoplankton in nitrate- rich environments. Limnol. Oceanogr. 36, 1689–1700.
- 661 Conroy, J.D., Quinlan, E.L., Kane, D.D., Culver, D.A., 2007. Cylindrospermopsis in Lake Erie:
 662 Testing its Association with Other Cyanobacterial Genera and Major Limnological
 663 Parameters. J. Gt. Lakes Res. 33, 519–535.
- Davis, T.W., Bullerjahn, G.S., Tuttle, T., McKay, R.M., Watson, S.B., 2015. Effects of
 Increasing Nitrogen and Phosphorus Concentrations on Phytoplankton Community Growth
 and Toxicity during Planktothrix Blooms in Sandusky Bay, Lake Erie. Environ. Sci.
 Technol. 49, 7197–7207.
- Forchhammer, K., Björn W., 2016. Closing a gap in cyanophycin
 metabolism. Microbiology 162, 727–729.
- Gardner, W.S., Lee, G.F., 1975. The role of amino acids in the nitrogen cycle of Lake
 Mendota. Limnol. Oceanogr. 20, 379–388.
- Gardner, W. S., Lavrentyev, P. J., Cavaletto, J. F., McCarthy, M. J., Eadie, B. J., Johengen, T.
 H., Cotner, J. B., 2004. Distribution and dynamics of nitrogen and microbial plankton in
 southern Lake Michigan during spring transition 1999-2000. J. Geophys. Res. 109
- 675 Gardner, W.S., Newell, S.E., McCarthy, M.J., Hoffman, D.K., Lu, K., Lavrentyev, P.J.,
- 676 Hellweger, F.L., Wilhelm, S.W., Liu, Z., Bruesewitz, D.A., Paerl, H.W., 2017. Community
- 677 Biological Ammonium Demand: A Conceptual Model for Cyanobacteria Blooms in
- 678 Eutrophic Lakes. Environ. Sci. Technol. 51, 7785–7793.

- 679 Glibert, P. M., 1988. Primary productivity and pelagic nitrogen cycling. In:
- Blackburn, T. H., and Sorensen, J. (eds.), Nitrogen Cycling in Coastal Marine
 Environments. John Wiley & Sons, Chichester. pp 3–31.
- Glibert, P.M., Wilkerson, F.P., Dugdale, R.C., Raven, J.A., Dupont, C.L., Leavitt, P.R., Parker,
 A.E., Burkholder, J.M., Kana, T.M., 2016. Pluses and minuses of ammonium and nitrate
 uptake and assimilation by phytoplankton and implications for productivity and community
 composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 61, 165–
 197.
- 687 Gobler, C.J., Burkholder, J.M., Davis, T.W., Harke, M.J., Johengen, T., Stow, C.A., Van de
 688 Waal, D.B., 2016. The dual role of nitrogen supply in controlling the growth and toxicity of
 689 cyanobacterial blooms. Harmful Algae 54, 87–97.
- Gu, B., Havens, K.E., Schelske, C.L., Rosen, B.H., 1997. Uptake of dissolved nitrogen by
 phytoplankton in a eutrophic subtropical lake. J. Plank. Res. 19, 759–770.
- Gupta, M., Carr, N.G., 1981. Enzyme activities related to cyanophycin metabolism in heterocysts
 and vegetative cells of Anabaena spp. Microbiology 125, 17–23.
- Haga, H., Nagata, T., Sakamoto, M., 1995. Size-fractionated NH4+ regeneration in the pelagic
 environments of two mesotrophic lakes. Limnol. Oceanogr. 40, 1091–1099.
- Hampel, J.J., McCarthy, M.J., Gardner, W.S., Zhang, L., Xu, H., Zhu, G., Newell, S.E., 2018.
 Nitrification and ammonium dynamics in Taihu Lake, China: seasonal competition for ammonium between nitrifiers and cyanobacteria. Biogeosciences 15, 733–748.
- Havens, K.E., Fukushima, T., Xie, P., Iwakuma, T., James, R.T., Takamura, N., Hanazato, T.,
 Yamamoto, T., 2001. Nutrient dynamics and the eutrophication of shallow lakes
 Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environ. Pollut. 111,
 263–272.
- James, R.T., Gardner, W.S., McCarthy, M.J., Carini, S.A., 2011. Nitrogen dynamics in Lake
 Okeechobee: Forms, functions, and changes. Hydrobiologia 669, 199–212.
- Kana, T.M., Darkangelo, C., Hunt, M.D., Oldham, J.B., Bennett, G.E. and Cornwell, J.C., 1994.
 Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and
 Ar in environmental water samples. Anal. Chem. 66, 4166–4170.
- Kirchman, D.L., Keil, R.G., Wheeler, P.A., 1990. Carbon limitation of ammonium uptake by
 heterotrophic bacteria in the subarctic Pacific. Limnol. Oceanogr. 35, 1258–1266.
- Kurmayer, R., Blom, J.F., Deng, L., Pernthaler, J., 2015. Integrating phylogeny, geographic
 niche partitioning and secondary metabolite synthesis in bloom-forming Planktothrix. ISME
 J. 9, 909–921.
- Lupette, J., Lami, R., Krasovec, M., Grimsley, N., Moreau, H., Piganeau, G., Sanchez-Ferandin,
 S., 2016. Marinobacter dominates the bacterial community of the Ostreococcus Tauri
 phycosphere in culture. Front. Microbiol. 7, 1–14.
- Mackerras, A.H., de Chazal, N.M., Smith, G.D., 1990. Transient accumulations of cyanophycin
 in Anabaena cylindrica and Synechocystis 6308. Microbiology 136, 2057–2065.
- Martens-Habbena, W., Berube, P.M., Urakawa, H., De La Torre, J.R., Stahl, D.A., Torre, J.,
 2009. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and
 Bacteria. Nature 461, 976–979.
- McCarthy, M.J., Gardner, W.S., Lehmann, M.F., Bird, D.F., 2013. Implications of water column
 ammonium uptake and regeneration for the nitrogen budget in temperate, eutrophic
 Missisquoi Bay, Lake Champlain (Canada/USA). Hydrobiologia 718, 173–188.
- 724 McCarthy, M.J., James, R.T., Chen, Y., East, T.L., Gardner, W.S., 2009. Nutrient ratios and

- phytoplankton community structure in the large, shallow, eutrophic, subtropical Lakes
 Okeechobee (Florida, USA) and Taihu (China). Limnology 10, 215–227.
- 727 Millie, D.F., Fahnenstiel, G.L., Bressie, J.D., Pigg, R.J., Rediske, R.R., Klarer, D.M., Tester,
- P.A., Litaker, R.W., 2009. Late-summer phytoplankton in western Lake Erie (Laurentian
 Great Lakes): bloom distributions, toxicity, and environmental influences. Aquat. Ecol. 43,
 915–934.
- Nicklisch, A., Kohl, J.G., 1983. Growth kinetics of Microcystis aeruginosa (Kütz) Kütz as a
 basis for modelling its population dynamics, Internationale Revue der gesamten
 Hydrobiologie und Hydrographie 68, 317–326.
- Oberhaus, L., Briand, J.F., Leboulanger, C., Jacquet, S., Humbert, J.F., 2007. Comparative
 effects of the quality and quantity of light and temperature on the growth of Planktothrix
 agardhii and P. rubescens. J. Phycol. 43, 1191–1199.
- Paasche, E. 1988. Pelagic primary production in nearshore waters. In: Blackburn, T. H.
 and Sorensen, J. (eds.), Nitrogen Cycling in Coastal Marine Environments. John Wiley &
 Sons, Chichester, 33–57
- Paerl, H.W., Xu, H., McCarthy, M.J., Zhu, G., Qin, B., Li, Y., Gardner, W.S., 2011. Controlling
 harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for
 a dual nutrient (N & P) management strategy. Water Res. 45, 1973–1983.
- Présing, M., Herodek, S., Preston, T., Vörös, L., 2001. Nitrogen uptake and the importance of
 internal nitrogen loading in Lake Balaton. Freshwater Biol. 46, 125–139.
- Ponndorf, D., Ehmke, S., Walliser, B., Thoss, K., Unger, C., Görs, S., Daş, G., Metges, C.C.,
 Broer, I., Nausch, H., 2017. Stable production of cyanophycinase in Nicotiana benthamiana
 and its functionality to hydrolyse cyanophycin in the murine intestine. Plant Biotechnol.
 J, 15, 605–613.
- Reyes, J.C., Muro-Pastor, M.I., Florencio, F.J., 1997. Transcription of glutamine synthetase
 genes (glnA and glnN) from the cyanobacterium Synechocystis sp. strain PCC 6803 is
 differently regulated in response to nitrogen availability. J. Bacteriol. 179, 2678–2689.
- Richards, R.P., Baker, D.B., Crumrine, J.P., Stearns, A.M., Erie, L., 2010. Unusually large loads
 in 2007 from the Maumee and Sandusky Rivers, tributaries to Lake Erie. J. Soil Water
 Conserv. 65, 450–462.
- Richter, R., Hejazi, M., Kraft, R., Ziegler, K., Lockau, W., 1999. Cyanophycinase, a peptidase
 degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid
 (cyanophycin). FEBS J. 263, 163–169.
- Rinta-Kanto, J.M., Wilhelm, S.W., 2006. Diversity of microcystin-producing cyanobacteria in
 spatially isolated regions of Lake Erie. Appl. Environ. Microbiol. 72, 5083–5085.
- Rücker, J., Wiedner, C., Zippel, P., 1997. Factors controlling the dominance of Planktothrix
 agardhii and Limnothrix redekei in eutrophic shallow lakes. Hydrobiologia, 342, 107–115.
- Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L.R., van Nes, E.H., 1997. On the dominance of
 filamentous cyanobacteria in shallow, turbid lakes. Ecology 78, 272–282.
- Salk, K.R., Bullerjahn, G.S., Mckay, R.M.L., Chaffin, J.D., Nathaniel, E., 2018. Nitrogen
 cycling in Sandusky Bay, Lake Erie: oscillations between strong and weak export and
 implications for harmful algal blooms. Biogeosciences 15, 2891–2907.
- Scheffer, M., Rinaldi, S., Mur, L.R., 1994. On the dominance of filamentous blue-green algae in
 shallow lakes. Iiasa 78, 272–282.
- Steffen, M.M., Li, Z., Effler, T.C., Hauser, L.J., Boyer, G.L., Wilhelm, S.W., 2012. Comparative
 metagenomics of toxic freshwater cyanobacteria bloom communities on two

- continents. PloS one 7, e44002.
- Steffen, M.M., Belisle, B.S., Watson, S.B., Boyer, G.L., Wilhelm, S.W., 2014. Status, causes and
 controls of cyanobacterial blooms in Lake Erie. J. Gt. Lakes Res. 40, 215–225.
- Steffen, M.M., Belisle, B.S., Watson, S.B., Boyer, G.L., Bourbonniere, R.A., Wilhelm, S.W.,
 2015. Metatranscriptomic evidence for co-occurring top-down and bottom-up controls on
 toxic cyanobacterial communities. Appl. Environ. Microbiol. 81, 3268–3276.
- Suda, S., Watanabe, M.M., Otsuka, S., Mahakahant, A., Yongmanitchai, W., Nopartnaraporn,
 N., Liu, Y., Day, J.G., 2002. Taxonomic revision of water-bloom-forming species of
 oscillatorioid cyanobacteria. Int. J. Syst. Evol. Microbiol. 52, 1577–1595.
- Suttle, C.A., Harrison, P.J., 1988. Ammonium and phosphate uptake rates, N: P supply ratios,
 and evidence for N and P limitation in some oligotrophic lakes. Limnol. Oceanogr. 33, 186–
 202.
- Takahashi, M., Hama, T., Matsunaga, K., Handa, N., 1995. Nitrogenous nutrient uptake by
 phytoplankton and ammonium regeneration by microbial assemblage in Lake Biwa. J.
 Plank. Res. 17, 1027–1037.
- Tupas, L., Koike, I., 1991. Simultaneous uptake and regeneration of ammonium by mixed
 assemblages of heterotrophic marine bacteria. Mar. Ecol. Prog. Ser. 70, 273–282.
- Van de Waal, D.B., Ferreruela, G., Tonk, L., Van Donk, E., Huisman, J., Visser, P.M., Matthijs,
 H.C.P., 2010. Pulsed nitrogen supply induces dynamic changes in the amino acid
 compositionand microcystin production of the harmful cyanobacterium Planktothrix
 agardhii. FEMS Microbiol. Ecol. 74, 430–438.
- Watson, S.B., Miller, C., Arhonditsis, G., Boyer, G.L., Carmichael, W., Charlton, M.N.,
 Confesor, R., Depew, D.C., Höök, T.O., Ludsin, S.A., Matisoff, G., McElmurry, S.P.,
 Murray, M.W., Peter Richards, R., Rao, Y.R., Steffen, M.M., Wilhelm, S.W., 2016. The re-
- eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 56, 44–66.
- Welschmeyer, N.A., 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll
 b and pheopigments. Limnol. Oceanogr. 39, 1985–1992.
- Xie, L., Xie, P., Li, S., Tang, H., Liu, H., 2003. The low TN: TP ratio, a cause or a result of
 Microcystis blooms?. Water Res. 37, 2073–2080.
- Xu, H., Paerl, H.W., Qin, B., Zhu, G., Hall, N.S., Wu, Y., 2015. Determining critical nutrient
 thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu,
 China. Environ. Sci. Technol. 49, 1051–1059.
- Yang, J., Gao, H., Glibert, P.M., Wang, Y., Tong, M., 2017. Rates of nitrogen uptake by
 cyanobacterially-dominated assemblages in Lake Taihu, China, during late summer.
 Harmful Algae 65, 71–84.
- Yin, G., Hou, L., Liu, M., Liu, Z., Gardner, W.S., 2014. A novel membrane inlet mass
 spectrometer method to measure ¹⁵NH4₄⁺ for isotope-enrichment experiments in aquatic
 ecosystems. Environ. Sci. Technol. 48, 9555–9562.
- Zevenboom, W., de Groot, G.J., Mur, L.R., 1980. Effects of light on nitrate-limited Oscillatoria
 agardhii in chemostat cultures. Arch. Microbiol. 125, 59–65.
- 811 Zevenboom, W., Mur, L.R., 1981. Simultaneous short-term uptake of nitrate and ammonium by
 812 Oscillatoria agardhii grown in nitrate-or light-limited continuous
 813 culture. Microbiology 126, 355–363.
- 814 Zhao, M.X., Jiang, Y.L., He, Y.X., Chen, Y.F., Teng, Y.B., Chen, Y., Zhang, C.C., Zhou, C.Z.,
- 815 2010. Structural basis for the allosteric control of the global transcription factor NtcA by

the nitrogen starvation signal 2-oxoglutarate. Proc. Natl. Acad. Sci. U.S.A. 107, 12487–12492. 817 818 819 820

Tables

Table 1. Environmental parameters and nutrient concentrations in Sandusky Bay. DO values from June were measured with a sonde deployed in the eastern outer bay (east of EC 1163). Nutrient concentrations were measured in triplicate within \pm 10% error margin.

			Dissolved							
Date	Station	Temp	Oxygen	Chl a	$\mathrm{NH_4}^+$	NO_2^-	NO ₃ ⁻	SRP	TP	Secchi
		(°C)	$(mg L^{-1})$	$(\mu g L^{-1})$	(µM)	(µM)	(µM)	(µM)	(µM)	(cm)
June 5	ODNR 4	22.2		44.2	2.57	BDL**	243	0.28	3.44	38
	ODNR 6	21.9		58.3	2.64	BDL	251	0.28	3.10	48
	ODNR 2	21.7	9.18^{\dagger}	48.1	2.43	BDL	101	0.13	3.03	38
	Bells	ND*		5.8	2.57	BDL	62.1	0.13	2.50	ND
June 26	ODNR 4	21.5		107	2.57	BDL	33.6	0.25	9.69	32
	ODNR 6	21.7		88.8	2.71	BDL	96.4	0.28	6.47	40
	ODNR 2	21.5	9.29^{\dagger}	60.7	2.57	BDL	35.7	0.16	4.78	32
	Bells	20.4		44.8	2.93	BDL	41.4	0.19	1.38	106
July 31	ODNR 4	23.5		167	3.36	2.14	58.6	0.50	4.91	ND
	ODNR 6	23.6	9.71	172	2.14	4.29	77.1	0.25	4.09	ND
	ODNR 2	24.2		136	2.57	2.86	69.3	0.31	3.47	ND
	Bells	24.5		13.1	1.29	0.71	15.7	0.28	1.00	ND
August 14	ODNR 4	23.6		61.0	3.64	BDL	BDL	0.59	6.22	34
	ODNR 6	23.5		59.4	2.71	BDL	BDL	0.47	6.22	44
	ODNR 2	23.7	9.57	57.9	1.71	BDL	BDL	0.43	4.25	54
	Bells	24.4		11.2	2.79	0.71	1.43	0.38	1.16	80
August 28	ODNR 4	22.3		56.7	0.71	BDL	BDL	0.88	7.81	30
	ODNR 6	22.2		59.5	1.00	BDL	BDL	0.31	5.56	34
	ODNR 2	22.7	8.67	31.3	1.36	BDL	1.43	0.31	4.78	38
	Bells	23.1		14.9	0.86	BDL	0.71	0.31	1.53	132

*ND - not determined

**BDL – below the detection limit † Measured east of EC 1163

			Dissolved						
Date	Station	Temp	Oxygen	Chl a	$\mathrm{NH_4}^+$	NO_2^-	NO_3^-	OP	Secchi
		(°C)	$(mg L^{-1})$	$(\mu g L^{-1})$	(µM)	(µM)	(µM)	(µM)	(cm)
July 17	WE6	24.6	5.21	3.50	6.29	5.13	400	4.32	20
August 9	MB18	23.9	9.18	NM	0.99	1.51	96.5	0.16	NM
August 14	WE6	25.1	10.7	532	0.33	1.46	122	0.53	20
October 10	WE6	20.7	6.00	40.9	BDL	0.02	0.40	0.17	50

Table 2. Environmental parameters and nutrient concentrations in Maumee Bay. Nutrient concentrations were measured in triplicate within \pm 10% error margin.

*ND – not determined

I Banuasy Day.	NO ₃ ⁻ SRP TP Temp DO Chl a Secchi	0.561 0.524 0.874 -0.2 -0.4 0.597 -0.812	0.02 0.0 < 0.001 0.5 0.2 0.01 0.002	-0.64 0.493 0.766 - 0.092 -0.132 0.464 -0.493	0.007 0.05 0.001 0.7 0.6 0.07 0.1	0.521 0.438 0.857 -0.228 -0.271 0.517 - 0.735	0.04 0.09 <0.001 0.4 0.6 0.04 0.009
ילטים לאפ	SRP	0.524 0	0.0 ≤	0.493 0	0.05 0	0.438 0	⊳ 60.0
nnine r	NO_{3}^{-}	0.561	0.02	-0.64	0.007	0.521	0.04
incute data III							
ILULIV UAIA II	NO_2^-	-0.252 -	0.3	-0.232	0.4	-0.298	0.3
monipal anneu le uata m	NH_4^+ NO_2^-	-0.162 -0.252 -	0.5 0.3	-0.283 -0.232	0.3 0.4	-0.256 -0.298 -	0.3 0.3
TIAL COLLCTATION FOR MONDAL AND TO THE TAME TO	NH_4^+ NO_2^-	Spearman's Rho -0.162 -0.252 -	p value 0.5 0.3	Spearman's Rho -0.283 -0.232	p value 0.3 0.4	Spearman's Rho -0.256 -0.298 -	p value 0.3 0.3

nge and average		N2
(station rai		Doc /TL
egeneration (Dag /TN
c ton) to NH_4^+ r		Dag NH. ⁺
es; mT = metric		Dag NH ⁺
weekly averag		
dy ranges and		TKN load
loading (week		TKN load
dusky River N	nmer of 2017.	TN Iood
parison of San	4, 6) in the sun	TN load
Table 4. Com	for ODNR 2,	Comilina

Reg./TKN _w	33.0	121	633	1375
Reg./TN _w	1.9	37.7	478	1190
Reg. NH4 ⁺ s (mT)	40.7	65.2	123	199
Reg. NH4 ⁺ d (mT)	25.3-64.9	39.7-84.9	99.8–141	186–218
TKN/TN _a	0.132	0.318	0.840	0.919
TKN load _a (mT d ⁻¹)	1.23	0.54	0.194	0.145
TKN load _w $(mT d^{-1})$	0.3 - 2.46	0.29 - 1.05	0.16 - 0.23	0.11 - 0.17
TN load _a (mT d ⁻¹)	21.1	1.73	0.257	0.167
TN load _w (mT d ⁻¹)	7.8-55.6	0.9 - 3.1	0.17 - 0.40	0.11-0.19
Sampling Date	June 5th	July 31st	August 14th	August 28th

w –weekly range
a – weekly average
d – station range for sampling on date
s – station average for sampling on date

Figure List

Figure 1. Map of sampling locations in Sandusky Bay (41.46883; -82.85299) and Maumee Bay (41.71516; -83.39496). The inset shows the location of the western basin relative to the rest of Lake Erie.

Figure 2. Ammonium regeneration and potential uptake rates in Sandusky Bay in 2017. Potential light uptake rates (A), potential dark uptake rates (B), and averaged regeneration rates (C). Values are averaged (three replicates) with error bars showing \pm one standard error.

Figure 3. Community Biological Ammonium Demand (CBAD) in Sandusky Bay in light (A) and dark (B). Values are averaged (three replicates) with error bars showing \pm one standard error.

Figure 4. Michaelis-Menten NH_4^+ uptake kinetics in Sandusky Bay (A) and Maumee Bay (B) in 2017. The Michaelis-Menten model fits for Sandusky Bay were: June 5 (r = 0.98), June 26 (r = 0.75), July 31 (r = 0.92), Aug 14 (r = 0.73), Aug 28 (r = 0.97), and Maumee Bay model fits were: July 17 (r = 0.38), Aug 9 (r = 0.98), Aug 14 (r = 0.96), Oct 10 (r = 0.98).

Figure 5. Metatranscriptome data and ambient NH_4^+ and NO_3^- concentrations in Sandusky Bay in 2015. *cphA1* and *cphA2* are *Planktothrix agardhii* paralogs encoding cyanophycin synthetase, *cphB* encodes cyanophycinase, and *glnA* and *amt* encode glutamine synthetase and NH_4^+ transporters. Relative transcript abundance is presented as reads per kilobase of transcript per million mapped reads (RPKM).

Figures

Date